skip to main content


Search for: All records

Creators/Authors contains: "Holt, Laura"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Atmospheric predictability from subseasonal to seasonal time scales and climate variability are both influenced critically by gravity waves (GW). The quality of regional and global numerical models relies on thorough understanding of GW dynamics and its interplay with chemistry, precipitation, clouds, and climate across many scales. For the foreseeable future, GWs and many other relevant processes will remain partly unresolved, and models will continue to rely on parameterizations. Recent model intercomparisons and studies show that present-day GW parameterizations do not accurately represent GW processes. These shortcomings introduce uncertainties, among others, in predicting the effects of climate change on important modes of variability. However, the last decade has produced new data and advances in theoretical and numerical developments that promise to improve the situation. This review gives a survey of these developments, discusses the present status of GW parameterizations, and formulates recommendations on how to proceed from there.

     
    more » « less
  2. Abstract

    Four state-of-the-science numerical weather prediction (NWP) models were used to perform mountain wave (MW)-resolving hindcasts over the Drake Passage of a 10-day period in 2010 with numerous observed MW cases. The Integrated Forecast System (IFS) and the Icosahedral Nonhydrostatic (ICON) model were run at Δx≈ 9 and 13 km globally. The Weather Research and Forecasting (WRF) Model and the Met Office Unified Model (UM) were both configured with a Δx= 3-km regional domain. All domains had tops near 1 Pa (z≈ 80 km). These deep domains allowedquantitativevalidation against Atmospheric Infrared Sounder (AIRS) observations, accounting for observation time, viewing geometry, and radiative transfer. All models reproduced observed middle-atmosphere MWs with remarkable skill. Increased horizontal resolution improved validations. Still, all models underrepresented observed MW amplitudes, even after accounting for model effective resolution and instrument noise, suggesting even at Δx≈ 3-km resolution, small-scale MWs are underresolved and/or overdiffused. MW drag parameterizations are still necessary in NWP models at current operational resolutions of Δx≈ 10 km. Upper GW sponge layers in the operationally configured models significantly, artificially reduced MW amplitudes in the upper stratosphere and mesosphere. In the IFS, parameterized GW drags partly compensated this deficiency, but still, total drags were ≈6 times smaller than that resolved at Δx≈ 3 km. Meridionally propagating MWs significantly enhance zonal drag over the Drake Passage. Interestingly, drag associated with meridional fluxes of zonal momentum (i.e.,) were important; not accounting for these terms results in a drag in the wrong direction at and below the polar night jet.

    Significance Statement

    This study had three purposes: to quantitatively evaluate how well four state-of-the-science weather models could reproduce observed mountain waves (MWs) in the middle atmosphere, to compare the simulated MWs within the models, and to quantitatively evaluate two MW parameterizations in a widely used climate model. These models reproduced observed MWs with remarkable skill. Still, MW parameterizations are necessary in current Δx≈ 10-km resolution global weather models. Even Δx≈ 3-km resolution does not appear to be high enough to represent all momentum-fluxing MW scales. Meridionally propagating MWs can significantly influence zonal winds over the Drake Passage. Parameterizations that handle horizontal propagation may need to consider horizontal fluxes of horizontal momentum in order to get the direction of their forcing correct.

     
    more » « less
  3. Abstract

    We compare the response of the Quasi‐Biennial Oscillation (QBO) to a warming climate in eleven atmosphere general circulation models that performed time‐slice simulations for present‐day, doubled, and quadrupled CO2climates. No consistency was found among the models for the QBO period response, with the period decreasing by 8 months in some models and lengthening by up to 13 months in others in the doubled CO2simulations. In the quadrupled CO2simulations, a reduction in QBO period of 14 months was found in some models, whereas in several others the tropical oscillation no longer resembled the present‐day QBO, although it could still be identified in the deseasonalized zonal mean zonal wind timeseries. In contrast, all the models projected a decrease in the QBO amplitude in a warmer climate with the largest relative decrease near 60 hPa. In simulations with doubled and quadrupled CO2, the multi‐model mean QBO amplitudes decreased by 36 and 51%, respectively. Across the models the differences in the QBO period response were most strongly related to how the gravity wave momentum flux entering the stratosphere and tropical vertical residual velocity responded to the increases in CO2amounts. Likewise it was found that the robust decrease in QBO amplitudes was correlated across the models to changes in vertical residual velocity, parametrized gravity wave momentum fluxes, and to some degree the resolved upward wave flux. We argue that uncertainty in the representation of the parameterized gravity waves is the most likely cause of the spread among the eleven models in the QBO's response to climate change.

     
    more » « less